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A. Recursive computation of rare variant sharing probabilities in pedigrees with

lineages coalescing below the founders

Let Bk denote the number of copies of the RV in subject k where a line of descent from a

founder branches into two separate lines of descent to a subset of sequenced subjects. Without

loss of generality, let k be the branching individual who has sequenced subjects 1, . . . , ik as

descendants through independent lines of descent. We have for the numerator of equation (1)

P [C1 = · · · = Cn = 1] = P [C1 = · · · = Cik = 1|Bk = 1]P [Bk = Cik+1 = · · · = Cn = 1] (A1)

because P [C1 = · · · = Cik = 1|Bk = 0] = 0. The term P [C1 = · · · = Cik = 1|Bk = 1] is

computed from equation (2.1) replacing Fj by Bk = 1. The term P [Bk = Cik+1 = · · · = Cn = 1]

is then computed by reapplying equation (A1) recursively for every branching individual.

Also, for a founder above a branching individual in the pedigree, we have in equation (1)

P [C1 = · · · = Cn = 0|Fj]

= P [C1 = · · · = Cik = 0|Bk = 1, Fj]× P [Bk = 1, Cik+1 = · · · = Cn = 0|Fj]

+ P [C1 = · · · = Cik = 0|Bk = 0, Fj]× P [Bk = Cik+1 = · · · = Cn = 0|Fj]

= P [C1 = · · · = Cik = 0|Bk = 1]× P [Bk = 1, Cik+1 = · · · = Cn = 0|Fj]

+ P [Bk = Cik+1 = · · · = Cn = 0|Fj] (A2)

The term P [C1 = · · · = Cik = 0|Bk = 1] is computed from the right-hand side of equation (1)

replacing Fj by Bk = 1. The two terms P [Bk = a, Cik+1 = · · · = Cn = 0|Fj], a = 0, 1, require

recursive computations. If h is a branching individual who is an ancestor of k and a descendant
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of founder j, then

P [Bk = 1, Cik+1 = · · · = Cn = 0|Fj]

= P [Bk = 1, Cik+1 = · · · = Cih = 0|Bh = 1]× P [Bh = 1, Cih+1 = · · · = Cn = 0|Fj]

=

(
1

2

)Dkh

P [Cik+1 = · · · = Cih = 0|Bh = 1]× P [Bh = 1, Cih+1 = · · · = Cn = 0|Fj](A3)

and similarly to equation (A2),

P [Bk = Cik+1 = · · · = Cn = 0|Fj]

=

(
1−

(
1

2

)Dkh

)
× P [Cik+1 = · · · = Cih = 0|Bh = 1]× P [Bh = 1, Cih+1 = · · · = Cn = 0|Fj]

+ P [Bh = Cih+1 = · · · = Cn = 0|Fj] (A4)

where the computation of the term P [Cik+1 = · · · = Cih = 0|Bh = 1] can itself involve other

branching individuals who are descendants of h.

B. Estimating the common kinship coefficient among founders based on estimated

kinship coefficients between sequenced subjects

We express the kinship coefficient between subjects i1 and i2 as a function of the kinship

coefficients between founder pairs as follows:

φi1i2 = φf
∑
j

∑
k>j

[(
1

2

)Di1j
+Di2k

I(j&k not mating) +

(
1

2

)Di1j
+Di2k

−1

I(j&k mating)

]
+ φp

i1i2

= φfκi1i2 + φp
i1i2

(B1)

where I(C) is the indicator function taking value 1 if the condition C is true and 0 otherwise,

and φp
i1i2

is the expected kinship for the pair i1, i2 based on the known pedigree alone. An



– 4 –

estimate of φf is then obtained for every pair i1, i2 as

φ̂f
i1,i2

=
(φ̂i1i2 − φ

p
i1i2

)

κi1i2
(B2)

These pair-specific estimates are then averaged over all pairs of sequenced subjects from the

same population to obtain a global φ̂f .

C. Computation of PU

In general the probability of FU
j , the event that founder j is the only one to introduce the RV

into the family, is

P [FU
j ] = P [Fj]−

∑
k 6=j

P [Fj, Fk] (C1)

We can obtain PU by developing equation (C1) into:

PU =

2nf∑
a=2nf−d

P [A = a]

(
P [Fj|A = a]−

∑
k 6=j

P [Fj, Fk|A = a]

)

The probability that any founder j introduces the RV under our model assuming his genotype

is composed of two distinct alleles drawn from among the a distinct alleles of the founders is

P [Fj|A = a] = Pa = 2
a

. We also note that P [Fj, Fk|A = a] depends only on a and we note it

Ra.

PU =

2nf∑
a=2nf−d

P [A = a]

(
Pa −

∑
k 6=j

Ra

)

=

2nf∑
a=2nf−d

P [A = a]

(
2

a
− (nf − 1)Ra

)
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To solve for Ra, we use a basic result from probability theory:

1 = P [F1 ∪ · · · ∪ Fnf
]

=

nf∑
j=1

P [Fj]−
nf∑
j=1

nf∑
k=j+1

P [Fj, Fk]

=
∑
a

P [A = a]

(
nf∑
j=1

P [Fj|A = a]−
nf∑
j=1

nf∑
k=j+1

P [Fj, Fk|A = a]

)

=
∑
a

P [A = a]

(
nfPa −

1

2
nf (nf − 1)Ra

)
(C2)

assuming at most two founders can introduce the RV. To find a solution for Ra, we assume that

nfPa − 1
2
nf (nf − 1)Ra = 1, which obviously satisfies (C2). We obtain

Ra =
2(

2nf

a
− 1)

nf (nf − 1)

and

PU =
∑
a

P [A = a]

(
2

nf

− 2

a

)
. (C3)

The expected kinship coefficient among the nf founders with respect to the distribution (2) of

A is

E[Φ] =

∑2nf−1
a=2nf−d

1
(2nf−a)!

θ(2nf−a)φ̄a∑2nf

a=2nf−d
1

(2nf−a)!
θ(2nf−a)

(C4)

where φ̄a is the mean kinship coefficient among the nf founders when there are a alleles distinct

by descent.
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Assuming no inbreeding among the founders, we have that:

φ̄a = P [Alleles from two founders are IBD|One of the two shares allele IBD with 2 other founders]

× P [One of the two founders shares allele IBD with 2 other founders]

+ P [Alleles from two founders are IBD|One of the two shares allele IBD with 1 other founder]

× P [One of the two founders shares allele IBD with 1 other founder]

=
1

2(nf − 1)

2nf − a
nf

2nf − a− 1

nf − 1
+

1

4(nf − 1)

[
(2nf − a)(a− nf )

nf (nf − 1)
+

2(2nf − a)(a− nf )

nf (2nf − 1)

]
(C5)

Proof The probability that alleles from two founders are IBD given one of the founders shares

an allele IBD with m other founders where m = 1 or 2 is simply the probability of randomly

sampling one of these m founders times the probability of sampling the allele shared IBD by the

two founders, that is

P [alleles from two founders are IBD|one of the founders shares an allele IBD with m other founders]

=
m

4(nf − 1)

The probability that one of the founders shares an allele IBD with 2 other founders is the

probability for that founder to have received as his first allele one of the two copies of the

2nf − a alleles present in two copies among the 2nf founder alleles, and as his second allele

one of the two copies of the 2nf − a− 1 remaining alleles with two copies among the 2nf − 2

remaining eligible alleles (excluding sampling the second copy of the same allele, because we
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assume founders are not inbred). Each of these alleles is present in two copies, so

P [One of the founders shares an allele IBD with 2 other founders]

=
2(2nf − a)

2nf

2(2nf − a− 1)

2nf − 2

=
2nf − a
nf

2nf − a− 1

nf − 1

The probability that one of the founders shares an allele IBD with 1 other founder is the

probability for that founder to have received as his first allele one of the two copies of the

2nf − a alleles present in two copies among the 2nf founder alleles, and as his second allele one

of the 2a− 2nf alleles present in a single copy among the 2nf − 2 remaining eligible alleles, or

the reverse, that is to have received as his first allele one of the 2a − 2nf alleles present in a

single copy among the 2nf founder alleles, and as his second allele one of the two copies of the

2nf − a alleles present in two copies among the 2nf − 1 remaining alleles. The probability of

the event of interest is then:

P [One of the founders shares an allele IBD with 1 other founder]

=
2(2nf − a)

2nf

2a− 2nf

2nf − 2
+

2a− 2nf

2nf

2(2nf − a)

2nf − 1

=
(2nf − a)(a− nf )

nf (nf − 1)
+

2(2nf − a)(a− nf )

nf (2nf − 1)

Equating E[Φ] = φ̂f , we solve the polynomial equation (C4) for θ. The value of d required to

obtain a good approximation depends on the value of φ̂f . When we need to allow fewer than

2nf − 5 distinct alleles to obtain a real positive root of the polynome in θ, we obtain a poor

approximation, since the probability that any one of the distinct alleles (including the RV of

interest) is present more than twice becomes non-negligible (see Results section). This is why
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we propose setting d = 5. When φ̂f is small, the approximation is almost identical with values

of d from 2 or 3 to 5. When d = 2, we have the explicit solution:

θ̂ =
−(φ̂f − φ̄2nf−1)−

√
(φ̂f − φ̄2nf−1)

2 − 2(φ̂f − φ̄2nf−2)φ̂
f

φ̂f − φ̄2nf−2
(C6)

D. Sharing probabilities conditional on the introduction of the RV by two of the

founders

We need to introduce an additional type of subjects: the descendants that are common to the

two founders introducing the RV, and who can therefore receive two copies of the variant. We

note the number of copies of the RV in such a subject h by Th.

As before, we begin by the expressions for the special case where all the sequenced subjects

descend from every founder among their ancestors through independent lines of descent. With

two founders introducing the RV, we further need to distinguish three events when no marriage

loops are present.

D.1. The lines of descent to every sequenced subject are common to the two

founders introducing the variant

This implies that the two founders i and j introducing the RV are mates and their descendants

in common are their children. With the assumption of independent lines of descent, the n
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sequenced individuals descend from n children of the founders and

P [C1 = · · · = Cn = 1|Fj, Fk]

=
n∑

x=0

P [C1 = · · · = Cn = 1|]{i : Ti = 2} = x, ]{i : Ti = 1} = n− x, Fj, Fk]

× P []{i : Ti = 2} = x, ]{i : Ti = 1} = n− x|Fj, Fk]

=
n∑

x=0

(
1

2

)∑
{i:Ti=2} Dij−2(1

2

)∑
{i:Ti=1} Dij−1(n

x

)(
1

4

)x(
1

2

)n−x

=
n∑

x=0

(
1

2

)Ds−n−x(
n

x

)(
1

2

)2x(
1

2

)n−x

=

(
1

2

)Ds n∑
x=0

(
n

x

)

=

(
1

2

)Ds−n

(D1)

where Ds =
∑

iDij and Dij = Dik∀i. This expression applies if all Dij ≥ 2, i.e. the sequenced

subjects are grandchildren or more distant descendants of the founders. When a sequenced

subject is a child of the founders, then Ci = Ti. We adapt the formula to distinguish the nc

sequenced subjects who are children of the founders from the others.

P [C1 ≥ 1, . . . , Cnc ≥ 1, Cnc+1 = · · · = Cn = 1|Fj, Fk]

= P [C1 ≥ 1, . . . , Cnc ≥ 1|Fj, Fk]× P [Cnc+1 = · · · = Cn = 1|Fj, Fk]

=

(
3

4

)nc
(

1

2

)(Ds−nc)−(n−nc)

=

(
3

4

)nc
(

1

2

)Ds−n

(D2)

The expression for the probability of not seeing the variant in any sequenced individual when all
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Dij ≥ 2 is:

P [C1 = · · · = Cn = 0|Fj, Fk]

=
n∑

x=0

n−x∑
y=0

P [C1 = · · · = Cn = 0|]{i : Ti = 2} = x, ]{i : Ti = 1} = y, Fj, Fk]

× P []{i : Ti = 2} = x, ]{i : Ti = 1} = y|Fj, Fk]

=
n∑

x=0

n−x∑
y=0

∏
{i:Ti=2}

(
1−

(
1

2

)Dij−2
) ∏
{i:Ti=1}

(
1−

(
1

2

)Dij−1
)

×
(

n

x, y, n− x− y

)(
1

4

)x(
1

2

)y (
1

4

)n−x−y

(D3)

without obvious simplification. The modification for sequenced subjects who are children of the

founders is similar to that for the joint sharing probability D2, with probability equal to 1
4

of not

receiving the variant instead of 3
4

of receiving it.

D.2. One founder is ancestor of all sequenced subjects and the other is ancestor of

only one subject

We note j the founder who is ancestor of all sequenced subjects and 1 the sequenced subject

descendant of the two founders j and k. There is only one child of founder k who can receive

two copies of the variant (possibly subject 1 himself) and we note that child h. The number of
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copies he received is noted T.

P [C1 = · · · = Cn = 1|Fj, Fk]

= P [C1 = · · · = Cn = 1|T = 2, Fj, Fk]P [T = 2|Fj, Fk]

+ P [C1 = · · · = Cn = 1|T = 1, Fj, Fk]P [T = 1|Fj, Fk]

=

(
1

2

)D1h−1+
∑n

i=2 Dij
(

1

2

)Dhj 1

2

+

(
1

2

)D1h+
∑n

i=2 Dij

[(
1

2

)Dhj 1

2
+

(
1−

(
1

2

)Dhj

)
1

2

]

=

(
1

2

)D1h+
∑n

i=2 Dij

[(
1

2

)Dhj

+
1

2

]
(D4)

This expression applies if D1h ≥ 1, i.e. subject 1 is not h himself, he or she is a grandchild or

more distant descendant of the founder k. When subject 1 is a child of founder k, the expression

becomes:

P [C1 ≥ 1, C2 = · · · = Cn = 1|Fj, Fk]

= P [C1 = 2, C2 = · · · = Cn = 1|Fj, Fk] + P [C1 = · · · = Cn = 1|Fj, Fk]

=

(
1

2

)Ds

1

2
+

(
1

2

)∑n
i=2 Dij 1

2

=

(
1

2

)Ds+1 [
1 + 2D1j

]
(D5)

The expression for the probability of not seeing the variant in any sequenced subject when
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Dih ≥ 1 is:

P [C1 = · · · = Cn = 0|Fj, Fk] =
n∏

i=1

P [Ci = 0|Fj, Fk]

= {P [C1 = 0|T = 2, Fj, Fk]× P [T = 2|Fj, Fk]

+P [C1 = 0|T = 1, Fj, Fk]× P [T = 1|Fj, Fk]

+P [C1 = 0|T = 0, Fj, Fk]× P [T = 0|Fj, Fk]}

×
n∏

i=2

P [Ci = 0|Fj]

=

{(
1−

(
1

2

)D1h−1
)(

1

2

)Dhj 1

2

+

(
1−

(
1

2

)D1h

)
1

2
+

(
1−

(
1

2

)Dhj

)
1

2

}

×
n∏

i=2

(
1−

(
1

2

)Dij

)
(D6)

The same probability when subject 1 is a child of founder k is

P [C1 = · · · = Cn = 0|Fj, Fk] =
n∏

i=1

P [Ci = 0|Fj, Fk] =
1

2

n∏
i=1

(
1−

(
1

2

)Dij

)
(D7)

D.3. Each founder is ancestor of one sequenced subject

We assume that founder j is an ancestor of subject 1 and founder k is an ancestor of subject 2.

The formula applies equally to the case where both j and k are ancestors of the same subject,

as long as one is ancestor of that subject’s mother and the other ancestor of his father (or j or

k are themselves either father or mother of the subject). If there are n > 2 sequenced subjects,

then P [C1 = · · · = Cn = 1|Fj, Fk] = 0. If n = 2, then

P [C1 = C2 = 1|Fj, Fk] = P [C1 = 1|Fj]P [C2 = 1|Fk] =

(
1

2

)D1j+D2k

(D8)
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The expression for the probability of not seeing the variant in any sequenced subject is

P [C1 = · · · = Cn = 0|Fj, Fk] = P [C1 = 0|Fj]P [C2 = 0|Fk]

=

(
1−

(
1

2

)D1j

)(
1−

(
1

2

)D2k

)
(D9)

D.4. Extension to branching in the pedigree

Having two founders introducing the variant requires adaptation of the formulas of the Methods

section. Equation (A1) becomes

P [C1 = · · · = Cn = 1]

= P [C1 = · · · = Cik = 1|Bk = 1]× P [Bk = Cik+1 = · · · = Cn = 1]

+P [C1 = · · · = Cik = 1|Bk = 0]× P [Bk = 0, Cik+1 = · · · = Cn = 1] (D10)

The term P [C1 = · · · = Cik = 1|Bk = 1] is not directly computable, and we instead compute

terms P [C1 = · · · = Cik = 1|Fj, Bk = 1] for every founder j below the branching subject k in

the pedigree (in the sense defined in chapter 4 of Thompson (1986)), which can be done using

equations (D1), (D2), (D4) or (D5), depending on the relationship between j and k. These

terms can then be summed over all founders j below k, with equal weight when a common

kinship coefficient is estimated for all founders, or weighted by P [Fj|Bk = 1] computed from

the pair-specific kinship coefficient between founders. The term P [C1 = · · · = Cik = 1|Bk = 0]

is computed by applying equation (2.1) to every founders j below k. The other terms are

computed by reapplying equation (D10) recursively with the other branching individuals, with

slight modification for the terms where Bk = 0 instead of 1.

In equation (A2), the term P [C1 = · · · = Cik = 0|Bk = 1, Fj] can no longer be computed from

the right-hand side of equation (1) when j is a founder below k, but can be computed using
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equations (D3), (D6) or (D7). Similarly, the term P [C1 = · · · = Cik = 0|Bk = 0, Fj] no longer

equals 1 but equals P [C1 = · · · = Cik = 0|Fj] which can be computed using equation (1).

If instead founders h and j introducing the variant are both ancestors of branching individual

k (e.g. his parents), then one must consider the event Bk = 2. Additional terms are then

computed as follows:

P [C1 = · · · = Cik = 0|Bk = 2] =

ik∏
i=1

(
1−

(
1

2

)Dik−1
)

(D11)

If there is no other branching individual between either founder h or j and branching individual

k, then

P [Bk = 2, Cik+1 = · · · = Cn = 0|Fh, Fj]

=

(
1

2

)Dkh+Dkj

P [Cik+1 = · · · = Cn = 0|Fh, Fj] (D12)

P [Bk = 1, Cik+1 = · · · = Cn = 0|Fh, Fj]

=

[(
1

2

)Dkh

(
1−

(
1

2

)Dkj

)
+

(
1

2

)Dkj

(
1−

(
1

2

)Dkh

)]

×P [Cik+1 = · · · = Cn = 0|Fh, Fj] (D13)

P [Bk = 0, Cik+1 = · · · = Cn = 0|Fh, Fj]

=

(
1−

(
1

2

)Dkh+Dkj

)
P [Cik+1 = · · · = Cn = 0|Fh, Fj] (D14)

With other intervening branching individuals a recursion similar to equation (A3) would be

needed.
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E. Approximating sharing probabilities in presence of inbreeding

The inbred pedigree is trimmed to obtain a reduced pedigree without inbreeding loops, and the

term ”founder” refers from now on to the founders of this reduced pedigree. We assume that

only one founder allele (not necessarily the RV considered in the computation) can be shared by

one pair of founders and the event ”j and k share an allele IBD” means they are the only ones

to do so. This assumption is always satisfied when only two founders are related and then this

method gives an exact sharing probability. The method however allows all pairs of founders to

be related, and can still give a good approximation when the kinship coefficient between a few

of the founders are non-zero.

The probability that two related founders, say j and k, introduce the RV in the pedigree is

expressed as follows:

P [Fj, Fk] = P [Allele shared is RV|j&k share allele IBD]P [j&k share allele IBD]

=
1

2nf − 1
2φjk =

2φjk

2nf − 1
(E1)

where φjk is the kinship coefficient between founders j and k. The first term represents the

probability the RV is the allele IBD between the two founders among 2nf − 1 distinct alleles in

all founders. If we know which founders j and k are related, then their degree of relatedness is

usually also known, and this specifies their kinship coefficient φjk. If a subset of the founders are

suspected to be related (with other founders unrelated to that subset and among themselves)

then this method can still be applied, with the kinship coefficient among the subset of founders

suspected to be related estimated as described in the Methods section.

The marginal probability that any founder h introduces the RV needs to be adjusted compared
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to the unrelated case.

P [Fh] =
∑
j

∑
k>j

P [Fh|j&k share allele IBD]P [j&k share allele IBD]

+P [Fh|no founder pair shares allele IBD]P [no founder pair shares allele IBD]

=
2

2nf − 1

∑
j

∑
k>j

P [j&k share allele IBD] +
1

nf

(
1−

∑
j

∑
k>j

P [j&k share allele IBD]

)

=
4
∑

j

∑
k>j φjk

2nf − 1
+

1

nf

(
1− 2

∑
j

∑
k>j

φjk

)
(E2)

We obtain the probability of FU
j , the event that founder j is the only one to introduce the RV

into the family, from equation (C1). Once the required elements have been computed, we get

an adjusted estimate of sharing probability from the following formula:

P [RV shared] = (E3)∑
j P [C1 = · · · = Cn = 1|FU

j ]P [FU
j ] +

∑
j

∑
k>j P [C1 = · · · = Cn = 1|Fj, Fk]P [Fj, Fk]∑

j P [C1 + · · ·+ Cn ≥ 1|FU
j ]P [FU

j ] +
∑

j

∑
k>j P [C1 + · · ·+ Cn ≥ 1|Fj, Fk]P [Fj, Fk]

F. Simulation of small populations

The entire pedigree of small populations was simulated over 6 generations using the computer

package Spip (Anderson and Dunham 2005). The initial size of the population was set to

100, 200 or 400, with equal number of males and females. Population size increased at an

average rate of 10 percent per generation. Although Spip allows simulation of age-structured

populations, we simulated non-overlapping generations by specifying a single reproduction time.

Each subject had an 80 percent probability of reproducing and each reproducing female mated

with only one male selected randomly from the same generation. The number of offspring per

female followed a Poisson distribution. Kinship coefficients were computed using the R package

kinship2. The distribution of kinship coefficients between subjects from the same generation
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had converged to its equilibrium distribution around the fifth generation (data not shown).

In each simulated population, 2np distinct alleles were assigned to the np population founders

ancestral to any of the eight sampled pedigree founders and the transmission of these RVs to

the pedigree founders was simulated 2000 times under Mendel’s laws using the software package

Simulate (Terwilliger et al. 1993).

G. Whole exome sequencing study of nonsyndromic oral clefts

G.1. Genotyping and DNA sequencing

Whole exome sequencing and genotyping was done at the Center for Inherited Disease Reseach

(CIDR). Genomic DNA was isolated by the original research team, and aliquots of DNA were

sent to the CIDR for sequencing. All affected subjects included in the sequencing study were

genotyped using the Human OmniExpress SNP array from Illumina as a quality control step.

Genotypes were called using Illumina’s software package GenomeStudio (v. 2010.2, Genotyping

Module version 1.7.4, GenTrain version 1.0). Six subjects were genotyped in duplicate (4 family

members and 2 HapMap controls). Single nucleotide polymorphic (SNP) markers with call rate

< 98%, with cluster separation value < 0.2 or with discrepant genotypes in more than one

duplicate pair were removed from subsequent analyses.

DNA fragmentation was performed on 200ng of genomic DNA using a Covaris E210 system,

which shears DNA into fragments 150 to 200 bp in length with 3’ or 5’ overhangs. End

repair was performed where 3’ to 5’ exonuclease activity of enzymes removes 3’ overhangs,

and the polymerase activity fills in the 5’ overhangs. An A base is then added to the 3’ end

of the blunt phosphorylated DNA fragments to prepare DNA fragments for ligation to the

sequencing adapters, which have a single T base overhang at their 3’ end. Ligated fragments are

subsequently size selected through purification using SPRI beads and undergo PCR amplification

techniques to prepare the libraries. The Caliper LabChip GX was used for quality control of
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libraries to ensure adequate concentration and appropriate fragment size.

Exon capture was done using the Agilent SureSelect Human All Exon Target Enrichment

system (Kit S0297201), which results in 51Mb of targeted sequence capture per sample. Under

standard procedures, biotinylated RNA oligonucleotides were hybridized with 500ng of the

library. Magnetic bead selection was used to capture the resulting RNA-DNA hybrids. RNA is

digested and remaining DNA capture PCR-amplified. Sample indexing was introduced at this

step. The Agilent Bioanalyzer (HiSensitivity) was used for quality control of adequate fragment

sizing and quantity of DNA capture.

DNA sequencing was performed on an Illumina HiSeq 2500 instrument using standard protocols

for a 100 bp paired-end run. Six samples were run in per flowcell, guaranteeing > 90 − 95%

completeness at a minimum of 20X coverage. Variant Calling: Illumina HiSeq reads were

processed through Illumina’s Real-Time Analysis (RTA) software generating base calls and

corresponding quality scores. Resulting data were aligned to a reference genome with the

Burrows-Wheeler Alignment (BWA) tool creating a SAM/BAM file. Post processing of the

aligned data includes local realignment around indels, base call quality score recalibration

performed by the Genome Analysis Tool Kit (GATK) and flagging of molecular/optical duplicates

using software from the Picard program suite. Multi-sample variant calling was performed

using GATK2.0’s Unified Genotyper. Variant Quality Score Recalibration (VQSR) was done in

GATK2.0 and only variants passing this step were included. CIDR required a minimum mean of

8x coverage before calling any SNV, but the overall coverage averaged 84X over all exons.

G.2. Rare single nucleotide variant analysis

For the application of our proposed approach, we defined a rare SNV as an allele with

frequency < 0.01 based on the sequence of 5,379 subjects in the Exome Sequencing Project

(ESP, esp.gs.washington.edu/drupal/) database at the time of analysis, and a frequency
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< 0.01 in the 1,092 subjects from the April 2012 release of the 1000 Genomes data

(www.1000genomes.org). SNVs not seen in either of the above databases were retained if they

were either absent or their frequency was ≤ 0.1 in an internal database of all exomes previously

sequenced at the Center for Inherited Disease Research (Baltimore, MD), to increase confidence

variant calls did not result from technical artifacts. Among SNVs passing the above filtering

criteria, SNVs seen in more than 20 percent of the families were excluded.

The G allele of rs149253049 was called unambiguously in our study: among the reads covering

that position in the sequenced subjects from these three families, the number with the G allele

ranged from 16 out of 33 to 34 out of 69. The G nucleotide is the rarest of the three alleles of

rs149253049. It was not found in the ESP database nor the 1000 Genomes project data. It was

seen once in the 662 participants of European descent from the ClinSeq project (0.001 frequency

reported in www.ncbi.nlm.nih.gov/snp/). The subjects in the Indian oral cleft families

are from the Bengali population which shares partially its ancestry with the Gujarati Indian

from Houston, Texas (GIH) and the Indian Telugu from the UK (ITU) included in the 1000

Genome project. Nonetheless, the G allele could be present in the Indian Bengali population

at a small but appreciable frequency, which could violate the underlying assumption of IBS

without IBD being negligible, and thus, render the reported sharing probability too optimistic.

We carried out a sensitivity analysis by calculating the true sharing probabilities as a function of

allele frequency, and found that as long as the true allele frequency in the Indian population is

below 1.1 percent our finding retains statistical significance after multiple comparison correction

(Supplementary Figure S4). In our Indian sample, kinship estimates between affected subjects

from genome-wide SNP genotypes were based on the estimator of Manichaikul et al. (2010)

robust to population stratification. There was no evidence of excess IBD sharing given the

known degree of relatedness, nor of relatedness between subjects from distinct Indian families,

and using equation (B2) on all 18 pairs of sequenced subjects we obtained an estimated mean

kinship of the founders φ̂f = −0.006. All this suggested sharing probabilities for rs149253049

computed based on known pedigree structures are accurate and these families are unrelated.
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By contrast, suspected relationships among founders and a higher variant frequency cast doubts

on the significance of the sharing observed at rs117883393. The T allele frequency in the ESP

database is 0.0063 for the whole sample and 0.0081 for the European American subsample.

We have reasons to suspect sharing probabilities may be underestimated in two of the families

where this SNV is shared because these families are from the Syrian sample, where cultural and

demographic factors make relationships between founders more likely. In our Syrian sample, we

used the moment estimator of Manichaikul et al. (2010) based on population allele frequencies

estimated in that sample instead of the robust estimator because the latter tended to give

negative estimates when the level of estimated inbreeding differed substantially between the

two relatives (results not shown). We then inferred φf using equation (B2) on all 13 pairs of

sequenced subjects and obtained φ̂f = 0.013, close to the kinship coefficient of second cousins

( 1
64

). The estimates of kinship between subjects from distinct Syrian and German families were

close to 0 or slightly negative, indicating no evidence of relatedness across families (not shown).

For the family shown on Figure 1A, the RV sharing probability obtained using a recursive

computation of the terms of equation (1) was 0.0028. The probability 1 − w that the rare T

allele at SNV rs117883393 was introduced by two founders equaled 0.092 using φ̂f = 0.013,

leading to an adjusted RV sharing probability of 0.0044. For the family shown on Figure 1B,

the RV sharing probability obtained from equation (2.1) was 0.011. The probability that this

rare allele was introduced by two founders was also equal to 0.092, leading to an adjusted RV

sharing probability of 0.018. With these adjusted RV sharing probabilities for these two Syrian

families, and assuming no unknown relationships in the two other families of German origin, the

p-value for all four families increased to 1.3× 10−5. An additional analysis of sensitivity to the

assumption of no IBS without IBD yielded p-values above the multiple comparison corrected

significance threshold of 2.1× 10−5 even for population allele frequencies much below 1 percent

in the Syrians (see Supplementary Figure S5), rendering the significance of rs117883393 in

OR2A2 somewhat doubtful.
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We compared these results to those of a standard variant filtering strategy. We retained

nonsynonymous or truncating SNVs not found in build 137 of dbSNP, and predicted to be

damaging based on a SIFT score < 0.05. We found 10,589 novel SNVs predicted to be damaging

in the entire exome. Of that number, 656 were shared by all sequenced relatives in at least one

family (only 7 were shared in two families, all others were shared in only one family). Using rare

variant sharing as a filter as proposed by Feng et al. (2011) therefore yields a large number of

variants to follow up.
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Table S1: Founder relatedness and distribution of number of copies of a rare variant for three
second cousins in small populations

N founders 100 200 400

mean (SDa) of 0.043 (0.004) 0.0216 (0.0015) 0.0108 (0.0006)

mean φfb

mean (SD) of 0.007 (0.003) 0.0039 (0.0023) 0.0022 (0.0007)

P[RV sharing]c

N founders Simulated Simulated Approx Simulated Approx

with RV mean (SD) mean (SD) mean (SD) mean (SD) mean (SD)

1 0.56 (0.07) 0.72 (0.07) 0.80 (0.02) 0.86 (0.05) 0.91 (0.01)

2 0.29 (0.03) 0.22 (0.04) 0.20 (0.02) 0.13 (0.04) 0.09 (0.01)

3+ 0.15 (0.05) 0.06 (0.04) 0 0.01 (0.01) 0

a SD: standard deviation

b φf : kinship coefficient among founders

c P[RV sharing]: probability of sharing of a rare variant by the three second cousins

Table S2: Sharing probabilities for rs149253049

Relationship between affecteds Degree Sharing probability

first cousins 3 0.0667

third cousins 7 0.0039

second cousins once removed 6 0.0079

Product 2.0× 10−6
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Fig. S1.— Pedigree of three second cousins used in simulation study. Filled symbols represent
affected members who have been sequenced.
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Fig. S2.— Number of distinct alleles in a sample of eight subjects from small populations. The
approximation of the distribution of the number of distinct alleles was obtained using either the
mean kinship coefficient among the eight sampled founders (approx. sample) or the mean kinship
coefficient in the population (approx. population)
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Fig. S3.— Observed versus expected distribution of − log10 p-values of the SNVs from the oral
clefts exome sequencing study with a potential p-value < 2.1× 10−5.
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Fig. S4.— P-values based on IBS sharing probabilities for rs149253049 in ADAMTS9. Derived p-
values (y-axis, log-scale) for the G allele of rs149253049 in ADAMTS9 calculated using conditional
probabilities and Mendel’s laws, as a function of variant allele frequency (x-axis), based on the
three Indian familiy pedigrees (Table 3). The sharing probabilities calculated under the assumption
of no IBS without IBD is 1

15×127×255 = 2.06× 10−6, indicated by the dotted horizontal line. The

multiple comparisons corrected significance threshold is 0.05
2,355

= 2.1×10−5 indicated by the dashed
horizontal lines.
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Fig. S5.— P-values based on IBS sharing probabilities for rs117883393 in OR2A2. Derived
p-values (z-axis, darker shades indicating higher p-values) for the T allele of rs117883393 in
OR2A2 as a function of assumed true variant allele frequencies in the German (x-axis) and Syrian
(y-axis) populations. The p-values are based on the calculated sharing probabilities of the two
Syrian families and the two German families that contained this variant allele. The cryptic founder
relatedness observed in the Syrian population was taken into account by approximating the sharing
probabilities using the same inflation factor derived in the analysis of the Syrian families under
the assumption of no IBS without IBD. A Monte Carlo simulation combining an allele frequency
of 0.01 and an adjustment for unknown relationships as decribed in the Methods indicated this
approximation was good at that allele frequency (results not shown). The multiple comparison
corrected significance threshold ( 0.05

2,355
= 2.1 × 10−5 ) is shown as a red line. Due to pedigree

structures, sharing probabilities (and thus, p-values) are much more sensitive to population allele
frequencies in the Syrians. Even allele frequencies as low as 0.5% in the Syrians would render
this finding non-significant.


